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Abstract

This work investigates the generalization capabil-
ities of two diffusion-based world models, OA-
SIS and WorldMem within the Minecraft envi-
ronment. OASIS is trained from scratch on the
diverse VPT dataset, while WorldMem is a fine-
tuned version of OASIS on a simpler, randomly
generated dataset. The models are evaluated on
three distinct datasets, VPT, WorldMem, and a
custom-designed Consistency dataset, each rep-
resenting a different distribution of the environ-
ment. Quantitative analysis using PSNR scores
and qualitative video comparisons show that both
models struggle to generalize beyond their train-
ing distributions, with fine-tuning also leading to
catastrophic forgetting of the pretrained distribu-
tion. These findings reveal the limitations of the
current world models in adapting to varied distri-
butions and suggest that combining datasets for
fine-tuning is necessary to preserve and extend
the model’s performance.

1. Introduction

Learning world models has been of significant interest to
the reinforcement learning (RL) community (Hafner et al.,
2020). By being an accurate approximation of a complex
environment, they allow testing and evaluating agents. More
importantly, by being fully differentiable, they enable end-
to-end training and gradient-based methods to optimize the
agent’s actions, facilitating planning and looking ahead,
which promises better agent performance in risk-critical
environments like autonomous driving or robotics. A key
innovation (Ha & Schmidhuber, 2018) was showing that
agents can be trained entirely in “dream” environments
generated by their world models, with policies successfully
transferring to actual environments.

Video games are virtual worlds, and all the challenges and
benefits of world models apply there as well. The Minecraft
game has been used as the environment for agent training
and exploration (Wang et al., 2023; Baker et al., 2022), and
recently has emerged as the de facto platform for world
model development due to its open-endedness and high
complexity. The premise is that the world model should

learn the game mechanics of the world and all the physics
laws. Recent years have seen several attempts to make this
work by employing video diffusion models (Ho et al., 2022).
The two most recent notable works are OASIS (Decart &
Julian Quevedo, 2024) and WorldMem (Xiao et al., 2025),
with both models showing great performance in their demo
videos.

A robust world model should learn the entire distribution of
the world, and in this work, we study how the two publicly
available models compare in this regard. Does their perfor-
mance hold up on a test distribution different from the one
they were trained on?

2. Related Works

2.1. Video Game Generation

To simulate a video game, the generative model needs to
learn to predict the next observation based on the history
of observations and actions. Formally, the model learns the
following probability distribution:

po(0t | 0t—1,a1—1...,00,00)

where o; represents the observation at time ¢, and a; repre-
sents the action at time .

World models have been introduced as a way to simulate
game environments through a combination of a variational
auto-encoder (VAE) to learn over input frames (vision ca-
pabilities) and a recurrent neural network (RNN) to predict
future distributions given past information (memory capabil-
ities). This has been tested and shown to be effective in the
VizDoom environment (Ha & Schmidhuber, 2018). Genera-
tive models are able to simulate games as demonstrated by
GameGAN (Kim et al., 2020), which uses a combination of
LSTM and GAN. It has been proposed that world models
can be learned in latent space, since compact representations
of the game state may improve the efficiency of planning
and simulation tasks (Hafner et al., 2019). Recent work has
demonstrated the effectiveness of Stable Diffusion models
in generating realistic game states to serve as world models
(Alonso et al., 2024).



2.2. Video Diffusion Models

With the rapid advancement of diffusion models (Ho et al.,
2020), video generation has made significant strides (Ho
et al., 2022). The field has evolved from traditional
U-Net-based architectures (Ronneberger et al., 2015) to
Transformer-based frameworks, DiT, (Peebles & Xie, 2023),
enabling video diffusion models to generate highly realis-
tic and temporally coherent videos. Recently, autoregres-
sive video generation (Chen et al., 2024) has emerged as
a promising approach to extend video length, theoretically
indefinitely. Notably, Diffusion Forcing (Chen et al., 2024)
introduces a per-frame noise-level denoising paradigm. Un-
like the full-sequence paradigm, which applies a uniform
noise level across all frames, per-frame noise-level denois-
ing offers a more flexible approach, enabling autoregressive
generation.

3. Method
3.1. Model Architecture

In this work, we evaluate two diffusion models, OASIS and
WorldMem, that serve as a world model of Minecraft. They
have the same architecture because WorldMem was trained
by borrowing the OASIS architecture and fine-tuning its
weights. The architecture consists of a VAE, a DiT with
an addition on the Spatio-Temporal transformer block for
better scalability with respect to the number of frames, and
Diffusion Forcing that allows training on past frames with a
variant noise level for better auto-regressive inference. The
model size is S00M params. The context length of the model
is 32 frames.

3.2. Data

In this section, we cover what the two models in question
were trained on:

1. OASIS was trained from scratch on the VPT (Baker
et al., 2022) dataset that consists of trajectories of real
players solving complex tasks. We call this dataset
VPT.

2. WorldMem fine-tuned OASIS on a 20M frame dataset
collected by the authors using a random agent that
walks and spins in various biomes. It’s worth noting
that the camera action values in this dataset are limited
to {—15,0,415} degrees instead of the full range of
[—180, +180] as in the VPT dataset. This dataset rep-
resents a much simpler distribution than VPT’s. We
call this dataset WorldMem.

Since we want to see how each model does not only on the
distribution it was trained on, but also on other distributions

in the environment, for evaluation, we use three datasets rep-
resenting different distributions. We draw two of them from
the VPT and WorldMem datasets by randomly sampling
128 256-frame segments from the held-out test splits of the
VPT and WorldMem datasets described above. The third
dataset, called Consistency, we programmatically collect us-
ing MineRL (Guss et al., 2019). The purpose of this dataset
is to test how the models perform on trajectories that should
have an element of consistency within the trajectory and
usually are not present in either of the two existing datasets.

The Consistency dataset is comprised of two types of tasks:
cycle and reverse. The idea is to make the agent do a set
of actions that produce frames, with some of them being
equivalent to each other. For example, in the cycle task,
with cycle length being n, frames 0,n,2n, ... should be
equal, and so are 1,n + 1,2n + 1, ..., and so on. In the
reverse task with the length of the forward sequence being
n, frames 0, 2n should be equal, and so are 1,2n — 1 and so
on. The average number of trajectory frames is 50, and the
number of trajectories is 100 (Click for an example video.).
This, when we compare the sequence of generated frames
to the ground truth frames, allows us to test the model’s
self-consistency. To match the camera action distribution of
the WorldMem dataset, we limit the camera action values to
{—15,0,+15} degrees in the Consistency dataset as well.

4. Experiments & Results

We consider two models:

1. OASIS: a model trained on the VPT dataset from
scratch.

2. WorldMem: a model trained by fine-tuning OASIS on
the WorldMem dataset.

To analyze how each model performs, we evaluate them
on three datasets: VPT, WorldMem, and Consistency. It’s
worth noting that VPT and Consistency datasets follow the
same format, and WorldMem has a different format. We im-
plement dedicated dataset classes to support the two formats.
The same goes for models. OASIS model was trained with
camera actions compressed from the full, [—180, +180],
range to [—1, 1] range, whereas WorldMem was trained on
camera actions represented as a discrete set of {—1,0, 1},
corresponding to {—15,0, 415} degrees. To support both
input formats, we implement the corresponding converters
where, in the case of WorldMem, we divide the degree value
by 15.

During evaluation, we run each model autoregressively with
20 DDIM steps, starting with the first ground truth frame
of the trajectory and replaying all of its actions. To provide
a quantitative comparison, we calculate a per-frame PSNR
between the generated frames and the ground truth.


https://drive.google.com/file/d/1i5PCES1saO8LAsGqadZcoS5z2KlbMr3m/view?usp=drive_link

MODEL VPT PSNR WORLDMEM CONSISTENCY
PSNR PSNR

OASIS 18.90 10.32 16.76

WORLDMEM 13.73 15.00 10.44

Table 1. Average PSNR values for OASIS and WorldMem models on VPT, WorldMem, and Consistency datasets.
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Figure 1. The PSNR-per-step curve on the VPT dataset.
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Figure 2. The PSNR-per-step curve on the World dataset.

We provide links to six generated videos (one video for each
model and dataset) in Appendix A. The model trained from
scratch, OASIS, does reasonably well on the challenging,
diverse VPT dataset, but quickly turns into a blur on the
WorldMem dataset. The finetuned model, WorldMem, does
very well on the WorldMem dataset, but quickly collapses
on the challenging VPT dataset. Both models quickly turn
into a blur on the Consistency dataset.

From the quantitative analyses in Table 1, Figures 1,2, and 3,
and qualitative analyses, we see that the OASIS model does
poorly on the simple, limited WorldMem dataset, not being

able to generalize to a different distribution of the environ-
ment. More interestingly, the WorldMem model, although
having been pre-trained on the VPT data and then exposed to
the additional WorldMem data, performs badly on the VPT
test dataset. We argue this happens due to the catastrophic
forgetting effect commonly observed in large language mod-
els finetuning.

We draw two conclusions. First, the current video game
world models are unable to produce meaningful results on
a distribution, even a simple one, different from the one
they were trained on. To produce truly generalizable, robust
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Figure 3. The PSNR-per-step curve on the Consistency dataset.

models there needs to be a fundamental change in either the
model size, training dataset size, or the generative paradigm.
Second, to extend the capabilities of an existing world model
to a new distribution, finetuning on this new distribution
alone doesn’t work. Instead, one should merge the existing
and new distributions into one dataset and fine-tune on it.

5. Conclusion

In this work, we evaluate the performance of two recent
world models of Minecraft, OASIS and WorldMem, on
three datasets, VPT, WorldMem, and Consistency, repre-
senting different environment distributions. We show that
the current world models of complex environments with
vast action spaces are very sensitive to the data distribution
they were trained on and cannot generalize to a different
distribution of the same environment. Moreover, we show
that finetuning a model trained on one distribution on an-
other distribution leads to catastrophic forgetting and bad
performance on the original distribution.
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A. Experiment Details

MODEL VPT VIDEO WORLDMEM CONSISTENCY
VIDEO VIDEO

OASIS CLICK CLICK CLICK

WORLDMEM CLICK CLICK CLICK

Table 2. Video sample links for OASIS and WorldMem models generated on VPT, WorldMem, and Consistency datasets.
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