
Transformer-Based Diffusion for Game Generation

Betty Li Hou* Jack Lu* Georgy Savva*

Abstract
We explore the application of transformer-based
diffusion models for game environment genera-
tion, investigating multiple approaches for condi-
tioning on past frames and actions: Video Gener-
ation (VG) to predict the whole video sequence
conditioned on past actions, and Single Frame
Generation (SFG) to predict a single frame con-
ditioned on past frames and actions, with both
concatenation and cross-attention mechanisms.
Using the ViZDoom My Way Home environ-
ment as our test environment, we demonstrate that
while SFG models achieve superior performance
in teacher-forcing scenarios with PSNR values
up to 32.21, VG models show better stability in
autoregressive generation, suggesting important
tradeoffs between model architecture and perfor-
mance.

1. Introduction
Computer games are carefully designed software systems
that operate on the following game loop: Collect user inputs,
update the game state, and render the visuals on screen. This
loop, running at high frame rates, gives players the impres-
sion of an interactive virtual environment. The process of
updating the game state and rendering is governed by a set
of manually programmed rules unique to each game, which
is carefully crafted and requires intense scrutiny.

The use of generative models as game engines offers a
promising new direction for game design. Rather than man-
ual programming, the models could generate the environ-
ment, as well as add new levels or change game mechanics.
Moreover, having a robust learned simulation of a game can
serve as a world model for future agent training. Recent
years have seen several attempts to make this work; however,
only the most recent attempt, Valevski et al (2024) (Valevski
et al., 2024) has been able to achieve sufficiently high render-
ing results on a fairly complex game, DOOM. The leap in
rendering quality and consistency was achieved by using the
state-of-the-art image generation model, Stable Diffusion

*Equal contribution .

(Rombach et al., 2022). Stable Diffusion has become the
standard in media generation as it can produce high-quality
images conditioned on multi-modal inputs, such as text and
images, and uses the U-Net CNN architecture as the diffu-
sion backbone. Recent work has shown that the transformer
architecture can be used as the diffusion backbone in Sta-
ble Diffusion, referred to as Diffusion Transformers (DiTs)
(Peebles & Xie, 2022), with stronger performance and scal-
ability. As such, we seek to apply DiTs for game generation,
experimenting with different methods of implementation
and conditioning.

2. Related Works
2.1. Game Generation

World models have been introduced as a way to simulate
game environments through a combination of a variational
auto-encoder (VAE) to learn over input frames (vision ca-
pabilities) and a recurrent neural network (RNN) to predict
future distributions given past information (memory capabil-
ities). This has been tested and shown to be effective in the
VizDoom environment (Ha & Schmidhuber, 2018). Genera-
tive models are able to simulate games as demonstrated by
GameGAN (Kim et al., 2020), which uses a combination of
LSTM and GAN. It has been proposed that world models
can be learned in latent space, since compact representations
of the game state may improve the efficiency of planning
and simulation tasks (Hafner et al., 2019). Recent work has
demonstrated the effectiveness of Stable Diffusion models
in generating realistic game states to serve as world models
(Alonso et al., 2024).

2.2. Diffusion Transformers

Advancements in diffusion models have introduced tech-
niques for replacing traditional networks with transformer-
based models. Vision Transformers (ViT) can capture long-
range dependencies, which makes them promising for use
in place of the U-net to improve stability and coherence
(Peebles & Xie, 2022). Diffusion Transformers (DiTs) are
based on the ViT architecture to operate on sequences of
image patches and have been demonstrated as a scalable
diffusion architecture. In addition to being more powerful,
it allows more flexibility to condition on longer sequences,
which is important for game generation.

1



3. Diffusion Game Simulation
We select ViZDooM My Way Home (Kempka et al., 2016)
as the game environment to generate and evaluate our new
methods on. In this game scenario, the agent must navigate a
labyrinth to find a vest which finishes the game. The map is
always the same and the vest remains in the same room, and
rooms are of different colors, interconnected with corridors.
The player is spawned in a randomly chosen room facing
a random direction. There are 5 actions available: turn left,
turn right, move forward, move left, move right.

Our method is as follows:

1. Generate a dataset of gameplay data: We generate
episodes of gameplay using a random policy with ac-
tion repeat (for smoother trajectories). An episode
consists of frame and action pairs.

2. Fine-tune a pre-trained VAE decoder on single game
frames in order to reconstruct the visual elements of
ViZDoom.

3. Train a DiT-based diffusion model in VAE latent space:
We randomly sample segments of a fixed length n,
ensuring that the segment lies within the episode.

4. Evaluation: We take an episode from the test dataset
and generate a trajectory based on the actions from
it using our models both auto-regressively and with
teacher forcing. In each case, the first generated frame
has the index n− 1 to ensure that the generated trajec-
tory is seeded with the first frames of the ground truth
episode. We measure the performance of the models
using PSNR.

4. Method
This section discusses various diffusion model architectures
for conditionally predicting new frames on past frames and
past actions1. We denote batch size with B, hidden embed-
ding dimension with M , and the channel, height, and width
dimensions of VAE latent as C, H , W .

4.1. Video Generation

In this approach, the diffusion model is trained to predict
n frames (the whole video sequence) conditioned on the
corresponding actions of the first n− 1 frames but not the
frames themselves.

During training, we take a segment of an episode of length
n, patchify the VAE latents of each frame into tokens, add
forward diffusion noise to all tokens of all n frames, add

1GitHub repo with implementations here:
https://github.com/georgysavva/diffusion-for-simulation.

learnable frame embeddings of dimension M that specify
the timestep of each frame within the sequence, and add
learnable action embeddings of dimension M that specify
the action of each frame. Figure 1 shows how each image
is processed. All concatenated tokens across frames are fed
into unmodified DiT blocks. Figure 2 shows the overall
Video Generation diffusion model architecture.

Figure 1. Before feeding into the DiT, each image is processed by
patchifying the VAE latents into tokens, adding diffusion noise,
and learnable action embeddings.

Figure 2. Overall architecture of the Video Generation model.

During inference, we condition our model on the past n− 1
frames with the RePaint method with r = 1 and j = 1. We
mask out the tokens corresponding to the last frame and
perform video completion based on the past n− 1 frames.
Specifically, at each reverse diffusion step, we add forward
diffusion noise to the n− 1 frames’ clean tokens and only
keep the output tokens of the final frame.

4.2. Single Frame Generation

In this approach, the diffusion model is trained to predict a
single frame at a time. During training, we take a segment
of an episode of length n, add forward diffusion noise to
the final image in the segment, and optimize the model to
denoise the final image while conditioning on the past n− 1
frames and corresponding actions. During inference, we
keep a rolling window of n− 1 past frames and correspond-
ing actions to conditionally sample the next frame from the
trained model. We try two different conditioning mecha-

2



nisms for the n− 1 past frames and actions—concatenation
conditioning and cross-attention conditioning—described
below. Figure 3 illustrates these two architectures.

Figure 3. Two methods of single frame generation: concatenation
conditioning and cross attention conditioning

4.2.1. CONCATENATION CONDITIONING

We concatenate the n− 1 past frames’ VAE latents with the
new frame’s latent to form a single tensor of shape B, n, C,
H , W . We patchify each frame’s latent into tokens of hidden
dimension M , add forward diffusion noise to the tokens of
the final frame, add corresponding action embeddings to
tokens from the first n − 1 frames, and concatenate all
tokens of all frames into a pool of tokens. Finally, we input
all tokens into unmodified DiT blocks with self-attention,
discard all output tokens corresponding to the first n − 1
frames because their inputs were clean tokens, and compute
loss on the token noise predictions for the final frame. Since
DiT blocks use the self-attention mechanism, this method’s
runtime scales quadratically to n.

4.2.2. CROSS ATTENTION CONDITIONING

Rather than feeding all clean tokens of the past n−1 frames
into the DiT block, we only feed the noisy tokens of the final
frame into the DiT block and condition on the past frame’s
clean tokens with the cross-attention mechanism. We add
two cross-attention blocks to each DiT block to attend to the
n−1 past frames and their corresponding actions separately:
the query vectors from the final frame and the key, and value
vectors from either the past frame clean tokens or action
embeddings. Since the number of query tokens is fixed to
be the number of tokens from the last frame, this method’s
runtime scales linearly to n.

5. Experiments & Results
We collect 2000 episodes for training and 200 for testing.
Episodes contain up to 2100 frames, and shorter if the agent
finishes the game earlier (this occurrs in 12.5% of episodes).
Due to resource constraints, we base our experiments on
a relatively short number of past frames, up to 7. We run
experiments by training DiT-B/4 from scratch or fine-tuning
the publicly available pre-trained DiT XL-2. We keep the
frame resolution to be 256 by 256. Table 5 shows the PSNR
values for all methods, between Video Generation and Sin-
gle Frame Generation, B/4 trained from scratch and XL-2
pretrained, and teacher forcing and auto-regressive models.

METHOD TEACHER
FORCING

AUTO-
REGRESSIVE

VG B/4 24.53 15.09
VG XL-2 21.19 14.24
SFG / CONCATENATION B/4 32.21 14.10
SFG / CONCATENATION XL-2 26.55 12.66
SFG / CROSS-ATTENTION B/4 29.45 14.54
SFG / CROSS-ATTENTION XL-2 24.82 13.64

Table 1. PSNR values for Video Generation (VG) and Single
Frame Generation (SFG), with either Concatenation or Cross-
Attention conditioning, under Teacher Forcing and Auto Regres-
sive settings.

We observe that the video generation model performs much
better at autoregressive inference than the models trained to
predict a single frame. In particular, it is the only model that
produces an autoregressive trajectory that is visually consis-
tent with the ground truth trajectory. However, the latter is
better at teacher-forcing trajectory generation and produces
trajectories with consistency, almost indistinguishable from
the ground-truth trajectory.

Another trend we observe is that the B/4 models we train
from scratch achieve better performance than the larger pre-
trained models with less training time, therefore using a
pre-trained model did not provide significant advantage.

Comparing concatenation and cross-attention conditioning
for single frame generation, we observe that the concate-
nation technique is more computationally expensive and
requires 4x more GPU memory. However, at least for this
small number of past frames, concatenation conditioning
attains a better performance than cross-attention condition-
ing and learns as fast despite having a smaller learning rate
(scaled down based on the batch size).

We include generated images and videos in Section 6, along
with the ground truth to compare. Additional experiment
details and results are shown in Appendix A.

6. Generated Results

3



The following shows 10 generated frames under each method, with Figure 4 as the ground truth frames.

Figure 4. Ground truth. Click for video.

Figure 5. Video Generation B/4 teacher forcing. Click for video.

Figure 6. Video Generation B/4 autoregressive. Click for video.

Figure 7. Single Frame Generation Concatenation B/4 teacher forcing. Click for video.

Figure 8. Single Frame Generation Concatenation B/4 autoregressive. Click for video.

Figure 9. Single Frame Generation Cross-Attention B/4 teacher forcing. Click for video.

Figure 10. Single Frame Generation Cross-Attention B/4 autoregressive. Click for video.

4

https://drive.google.com/file/d/1KEIM6K6-vxfTZcvcg26P-7DP8jLWyQxL/view?usp=drive_link
https://drive.google.com/file/d/1Voa11UJIPo6ay84LqEFjcj4bv0M-t1Dz/view?usp=drive_link
https://drive.google.com/file/d/1LYtKUn9lkNrOmXL91ltsF0k9NtqnjKM1/view?usp=drive_link
https://drive.google.com/file/d/1ps9v7f8XnIVyBJCRYwfGMiyJ9evJRJGY/view?usp=drive_link
https://drive.google.com/file/d/1AX4EtJuLsXE4VjOXvbrWTDY2cMLEiT86/view?usp=drive_link
https://drive.google.com/file/d/1HZsfb2uGJsqTj_orqlBD2EYP2Azxtjsw/view?usp=drive_link
https://drive.google.com/file/d/1RciLYt3Fgg9xWk9MoFi1muk2Pdqv2R8M/view?usp=drive_link


7. Limitations & Future Work
Context length Due to time and GPU constraints, the cur-
rent models do not incorporate much of the past information
in the episode. In order to work with longer sequences,
we will continue exploring cross attention conditioning as
it scales linearly with respect to the number of past steps.
We will also try compressing past frame representations
into lower dimensions. Since DOOM images are not as
complex as real world images, we believe further encoding
past context into lower dimensions before conditioning the
diffusion models with it may improve memory and training
time efficiency. Another approach is to use more scalable
attention mechanisms such as Infini Attention (Munkhdalai
et al., 2024) and Ring Attention (Liu et al., 2023).

Autoregressive collapse When simulating DOOM with
diffusion models, only the Video Generation models were
able to produce meaningful results for autoregressive trajec-
tory generation, while other models collapsed to repeating
similar frames quickly. A possible resolution to this prob-
lem is once the model has reached a reasonable performance
with the existing training scheme, we can train it autoregres-
sively with some past frames generated from itself. This
way, the model will learn to correct its errors when perform-
ing autoregressive generation at test time.

Combining video generation with past conditioning In
Video Generation, we denoise a stack of frames in order to
achieve autoregressive generation capabilities; however, this
is very computationally expensive as we must treat the past
frames and the current one exactly the same, and cannot
use cross attention or dimensionality reduction techniques.
Future work should explore a way to combine Video Gener-
ation techniques for the last m frames with a more efficient
conditioning technique, such as cross attention or encoding
for the n frames that were before (m << n). This ap-
proach would combine the robust autoregressive generation
properties of video models together with the scalability and
flexibility of various conditioning techniques.

8. Conclusion
We explore methods of transformer-based diffusion mod-
els for game environment generation, demonstrating that
our Single Frame Generation method is stronger at teacher-
forcing trajectory generation, while our Video Generation
model has better autoregressive inference performance. For
Single Frame Generation, conditioning by concatenation
achieves better performance than cross-attention condition-
ing for short sequences. In order to handle longer sequence
lengths and address autoregressive collapse, future work
should explore more scalable attention mechanisms, ap-
proaches combining video generation with efficient past

conditioning, and techniques for improving autoregressive
generation stability. These findings provide important direc-
tions for advancing the field of game environment simula-
tion using generative models.

Contribution Statement
BLH, JL, and GS contributed equally to this work. JL
led the Video Generation method and experiments, GS led
the Single Frame Generation method and experiments, and
BLH oversaw project organization. All team members con-
tributed to ideation and discussion throughout.

References
Alonso, E., Jelley, A., Micheli, V., Kanervisto, A., Storkey,

A., Pearce, T., and Fleuret, F. Diffusion for world mod-
eling: Visual details matter in atari. arXiv preprint
arXiv:2405.12399, 2024.

Ha, D. and Schmidhuber, J. World models. arXiv preprint
arXiv:1803.10122, 2018.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to
control: Learning behaviors by latent imagination. arXiv
preprint arXiv:1912.01603, 2019.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and
Jaśkowski, W. Vizdoom: A doom-based ai research
platform for visual reinforcement learning, 2016. URL
https://arxiv.org/abs/1605.02097.

Kim, S. W., Zhou, Y., Philion, J., Torralba, A., and Fi-
dler, S. Learning to simulate dynamic environments with
gamegan. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1231–
1240, 2020.

Liu, H., Zaharia, M., and Abbeel, P. Ring attention with
blockwise transformers for near-infinite context, 2023.
URL https://arxiv.org/abs/2310.01889.

Munkhdalai, T., Faruqui, M., and Gopal, S. Leave no con-
text behind: Efficient infinite context transformers with
infini-attention, 2024. URL https://arxiv.org/
abs/2404.07143.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. arXiv preprint arXiv:2212.09748, 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models, 2022. URL https://arxiv.org/
abs/2112.10752.

Valevski, D., Leviathan, Y., Arar, M., and Fruchter, S. Dif-
fusion models are real-time game engines, 2024. URL
https://arxiv.org/abs/2408.14837.

5

https://arxiv.org/abs/1605.02097
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2408.14837


A. Experiment Details

METHOD TEST LOSS LEARNING RATE BATCH SIZE TRAINING STEPS # CONDITIONING STEPS

VG B-4 0.058 1E-4 128 150,000 7
VG XL-2 0.03 1.25E-5 16 130,00 3
SFG / CONCATENATION B-4 0.13 1.0E-4 128 280,00 7
SFG / CONCATENATION XL-2 0.14 6.25E-6 8 66,000 7
SFG / CROSS-ATTENTION B-4 0.14 2.0E-4 256 94,000 7
SFG / CROSS-ATTENTION XL-2 0.14 1.75E-5 32 216,000 4

Table 2. Configuration details.

6


