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Abstract

We present AppSim, a family of learned world
models for API simulation. Building on the
model-based reinforcement learning successes
in vision-based games and text-driven environ-
ments, we consider two approaches. In the first,
we finetune a TinyLlama model on a custom
dataset of synthetic trajectories from the Ap-
pWorld engine, combining semi-random API
exploration with ChatGPT-driven user requests.
In the second, we use a powerful off-the-shelf
LLM in a zero-shot setting. Evaluating on held-
out trajectories using object-match accuracy,
BLEU, and ROUGE, we find that the general-
purpose LL.Ms exhibit superior performance.

1 Introduction

Predictive world models are differentiable approx-
imations of environment dynamics and central to
model-based reinforcement learning which enable
agents to optimize policies via gradient-based plan-
ning in latent state spaces (Hafner et al., 2020).
Seminal work demonstrated that an agent can learn
a “dream” simulator and train entirely within it,
with zero-shot transfer to the real environment (Ha
and Schmidhuber, 2018). Subsequent advances
such as DreamerV3 (Hafner et al., 2024) and Op-
erator World Models (Novelli et al., 2024) have
broadened these ideas to diverse domains and joint
estimation of rewards and transitions. Prior world
models focus on games or web navigation, while
only a select few tackle text-based API interactions.

Recent efforts have begun to explore language
models as world models in text-rich settings: tex-
tual game simulators (Ammanabrolu and Riedl,
2021; Wang et al., 2024), structured task planners
(Xie et al., 2024), and web agents (Gu et al., 2024).
Multimodal approaches like WorldGPT (Ge et al.,
2024) further extend this paradigm by leveraging
MLLMs to understand world dynamics through an-
alyzing millions of videos across diverse domains.
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However, API-driven applications that are ubig-
uitous in automated assistants, web agents, and
tool-augmented LMs—remain unmodeled.

To address this, we propose AppSim, the first
family of learned world models for a Todoist-style
task-management API. We analyze the perfor-
mance of powerful, costly LLMs in the zero-shot
setting compared to a small open-source LM fine-
tuned on a custom dataset. To build the latter, we
collect thousands of interaction trajectories via the
AppWorld simulator and finetune a decoder-only
Transformer (TinyLlama) to autoregressively pre-
dict each API response given the full history of
calls and replies. Both of our approaches are fully
differentiable.

2 Related Work

2.1 Latent World Models in RL

Model-based RL agents learn latent transition mod-
els to plan in imagined roll-outs. Dreamer (Hafner
et al., 2020) achieve high sample efficiency in vi-
sual domains, and recent diffusion-based engines
extend to real-time game simulation (Valevski et al.,
2024). Operator-theoretic approaches further inte-
grate reward and transition learning (Novelli et al.,
2024).

2.2 Text-Based World Modeling

Language-driven simulators have been stud-
ied in interactive fiction and text-based QA.
Knowledge-graph world models predict state
changes in text adventures (Ammanabrolu and
Riedl, 2021), while structured effect—precondition
models inject symbolic knowledge into LLMs (Xie
et al., 2024). Benchmarks like Text2World (Hu
et al., 2025) evaluate LLMs on PDDL-style plan-
ning tasks. MirrorAPI (Guo et al., 2024) introduces
a corpus for LLM-based API response simulation.
WorldGPT (Ge et al., 2024) extends multimodal
LLMs as generalist world models capable of un-



derstanding state transitions across diverse real-life
scenarios.

2.3 App and API Simulation

Toolformer (Schick et al., 2023) and related
tool-augmented LMs learn to invoke external APIs
for question answering, but do not simulate the
API’s internal state. AppWorld (Trivedi et al.,
2024) provides ground-truth API simulators for
daily apps, revealing that even GPT-4 often violates
API contracts. Recent work in stable API bench-
marking and web agent evaluation (Wang et al.,
2024) underscores the need for high-fidelity simu-
lators. Recent frameworks focus on improving API
interactions; AutoFeedback (Liu et al., 2024) pro-
vides an LLM-based approach for efficient and ac-
curate API request generation with static scanning
and dynamic analysis components, while SEAL
(Kim et al., 2024) offers a comprehensive evalua-
tion pipeline for API retrieval, calls, and responses.
Similarly, specialized frameworks for API argu-
ment filling in task-oriented conversations (Mok
et al., 2024) address the challenges of grounding
LLM responses to pre-defined API schemas.

3 Data Collection

We generated a dataset of API interaction trajec-
tories using an agent (powered by ChatGPT) in
an AppWorld simulation of the Todoist API. Each
trajectory is a sequence of user actions (API re-
quests) and the resulting API responses, ensuring
the requests are causally coherent (e.g. only com-
pleting tasks that were actually added). Having
real user interaction trajectories from the actual
Todoist app would be ideal, but no such public data
exists, and collecting trajectories from the actual
Todoist API would be unfeasible due to rate lim-
its, the inability to reset the state, and the potential
corruption of real, valuable data. We hence em-
ploy AppWorld (Trivedi et al., 2024), a one-to-one
implementation of the most popular apps and ser-
vices, including Todoist, specifically created for
Al training workflows. We use AppWorld’s imple-
mentation of Todoist to sample trajectories with
the assumption that they truthfully represent the
behavior of the actual app.

The setup of our Todoist app, or our initial world
state, is static and consists of some pre-populated
data belonging to one user. We implement a semi-
random agent that collects the app usage trajecto-
ries on behalf of that user. The agent randomly

Algorithm 1: Data Collection
Input: Todoist, TodoistAPISchema, LLM,
initialRequests, maxContextLength
Output: trajectory
Initialize trajectory with
initialRequests
while TOKEN_COUNT_OF (trajectory) <

maxContextLength do
prompt

BUILD_PROMPT (TodoistAPISchema,
trajectory)
newRequest <
LLM.GENERATE _REQUEST (prompt)
newResponse <
AppWorldTodoist.EXECUTE (newRequest)

trajectory.APPEND( (newRequest,
newResponse))

end
return trajectory

picks API requests from the API schema and exe-
cutes them in the AppWorld Todoist environment.
However, if we picked all request arguments ran-
domly, most of the API responses would be 404
Not Found because most of the API endpoints oper-
ate on objects that should already be in the system.
For example, to create a task you need to supply
the project ID the task should belong to. Thus, the
agent should follow a certain notion of causality
between requests in a trajectory. To implement
this, we make our agent use an LLM, specifically
ChatGPT-40 mini. The agent provides the API
schema and the trajectory requests and responses
in a prompt (see the prompt in Appendix A) to the
LLM and asks it to generate a new request for a
random endpoint in the schema, filling all non-id ar-
guments with random values and picking IDs from
the corresponding entity IDs found in past requests
and responses. For example, if the LLM sees there
were created projects with IDs 101 and 102, it will
pick either 101 or 102 as the project ID argument
for the consequent create task request. All trajecto-
ries start with the same list of initial requests and
responses, creating some entities in the system and
representing the initial state. The trajectory length
is the number of request-response pairs recorded in
a trajectory. The agent keeps adding steps to a tra-
jectory until its number of tokens starts exceeding
the context length of our generative model. The



pseudo-code for the data collection algorithm is in
algorithm 1.

In our methodology, a semi-random agent sam-
ples API endpoints with set weights. The agent
samples each API endpoint e according to the dis-
crete distribution

p(create) = 0.40,
p(read) = 0.10,
p(update) = 0.25,
p(delete) = 0.15,
p(add_relationship) = 0.05,
)

p(remove_relationship) = 0.05.

Ensuring required parent objects exist. After choos-
ing an endpoint and IDs, we call ChatGPT with the
prompt: generate a function-call request with re-
alistic argument values. Each episode comprises
50 random calls plus recursive reads, truncated to
4K tokens. We collect 3K episodes ( 1.2M (action,
response) pairs).

4 Method

To simulate an app’s API, our model must learn to
generate the correct API response conditioned on
the incoming request and the full history of prior
interactions. Analogous to reinforcement-learning
terminology, we treat API requests as actions a;
and API responses as observations o;. Concretely,
we parameterize a conditional distribution

p@(Ot | ag, Ot—lvat—lv'-‘7007a0)7

where o, is the API’s response at step ¢ and a; is
the request issued at that step.

4.1 Finetuning an open-source LLM

To approximate this distribution, we employ a
decoder-only Transformer, i.e. the input stream
concatenates the tokenized sequence of past actions
and observations followed by the current action a;,
and the model autoregressively emits the tokens of
the next observation o .

Given a tokenized sequence of past actions
ag:t—1 and observations o0g.;—1, we optimize:

— Zlog Py(oy | ag—1,0¢-1,...,a0,00).
t

In our methodology, we compare two adaptation
strategies:

- Full fine-tuning: update all model parameters.
- LoRA: inject low-rank adapters into each
attention layer, freezing base weights.

We fine-tune our Transformer world model vari-
ants on the collected AppWorld trajectories using a
standard next-token cross-entropy objective. Each
training sample is obtained by uniformly sampling
a timestep t from a trajectory and concatenating
the tokenized sequence

[at, Ot—1, At—1,4 - .., 00, ao}

as model input, and the corresponding observation
tokens o; as the target. To focus the optimization
on API response generation, we mask out request
tokens (all a;) in the loss computation, so that gra-
dients flow only through tokens belonging to the
response o;.

At runtime, when an agent proposes an action
at, the model takes in a; plus the recent history
and generates oy, the predicted API response. We
then feed o; back to the agent as if it came from
the real API. This loop continues for multi-step
simulations.

4.2 Zero-shot LLM inference

This approach doesn’t involve any fine-tuning. In-
stead, we supply the LLM with the explanation
of what it should do, the API schema, and some
meta information. You can see the exact prompt in
Appendix B.

The generation of the trajectory is the same in
this approach. When an agent proposes an action
ag, the model takes in a; plus the recent history
and generates oy, the predicted API response. We
then feed o, back to the agent as if it came from
the real APL. This loop continues for multi-step
simulations.

5 [Evaluation

We replay 600 held-out episodes. At each step, we
feed the history plus action and sample the next
response. Metrics:

* Object-match accuracy: exact match on key
fields (IDs, names).

e BLEU-4 and ROUGE-L on tokenized re-
sponses.

Through the quantitative and qualitative analy-
ses, we find that proprietary LLMs perform much



Model Accy, BLEU Time(s) Cost($)
GPT 03 0.74 56.4 450 3.00
GPT 4.1 0.70 57.3 60 0.70

Table 1: Zero-shot GPT-4 baselines on held-out Todoist
trajectories.

Variant Accy BLEU  Time (s)
Full fine-tune 0.00 8.0 7
LoRA fine-tune 0.00 0.0 5

Table 2: TinyLlama world-model variants on the same
test set.

better than the small LM we finetuned. They re-
spect the syntax and format of the API schema.
You can find an example of a generated trajectory
by GPT 4.1 in Appendix C. The small finetuned
models fail to output a valid JSON and don’t follow
the API schema.

Another thing we observe is that the small LMs
are much faster at inference than the powerful
LLMs.

6 Discussion

Our empirical results reveal several key insights
about learned simulation of API dynamics. First,
large pre-trained models such as GPT-4 (ChatGPT)
exhibit surprisingly strong zero-shot performance
on the Todoist API task (75% total object accuracy),
owing to the deterministic, template-like nature of
CRUD operations that such models have likely
memorized during web-scale pretraining. This
illustrates that off-the-shelf LLMs can serve as
rudimentary simulators for simple, well-templated
APIs. However, we argue that as the API behavior
scales in complexity, the zero-shot method won’t
be able to produce accurate results.

A trained, dedicated world model is a more
promising approach. Yet as we learned in our ex-
periments, to produce satisfactory results, a much
higher scale of data is needed. Our dataset com-
prises only ~12M tokens across 3K trajectories,
whereas in model-based RL, robust dynamics sim-
ulation typically requires on the order of 1B tokens
to generalize faithfully (Hafner et al., 2020). The
limited data budget thus constrains the model’s
ability to internalize complex API semantics and
long-range dependencies. In addition to data scal-
ing, the model size should scale as well to much
that of the proprietary LLMs.

7 Conclusion

We have introduced AppSim, the family of fully
differentiable world models for a Todoist-style
task-management API. Leveraging the AppWorld
simulation of Todoist, we collected trajectory data
and finetuned the TinyLlama model together with
a powerful LLM model we used in a zero-shot set-
ting. Our work demonstrates that the latter can
effectively simulate the dynamics of text-based in-
terfaces, enabling agents to "imagine" the effects of
API calls. At the same time, our study surfaces key
challenges. A small model finetuned on the cus-
tom dataset of trajectories requires a higher scale
of data and model to produce satisfactory results.

Ethics Statement

All data is synthetically generated in a sandbox
environment; no personal user data was used. Our
simulator avoids real user privacy concerns.
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A Appendix: Data Generation Prompt

Below is the exact prompt template used to drive
the LLM for synthetic trajectory generation in App-
Sim:

NEW_REQUEST_PROMPT_TEMPLATE = """
I want you to help me

explore the Todoist API.

For this I want you to

generate a request

based on the endpoint schema.

I will also provide

some of the arguments

that I want you to use in the request.
For all other arguments

just come up with random content

that matches the type of the argument,
be creative.

For create requests,

make sure to use unique names

for the objects based on

what names are in the history of requests.
Output just the request in the format
of calling a python function,

pass all arguments as named parameters,
don't pass default values as None,

just skip them,

skip the “TodoistApis™ prefix,

don't wrap the function in any other text,
output the function as a single line text

ENDPOINT SCHEMA:

{endpoint_schema}

PRESET ARGS:
{args}
HISTORY:
{history}

NEW REQUEST:

nnn

This prompt ensures consistent,
schema-compliant LLM-driven request gen-
eration, seeding the AppWorld environment and
producing diverse, causally coherent trajectories
for downstream model training.

B Appendix: GPT Zero-shot prompt

Below is the exact prompt template used to simu-
late the API with a powerful LLM:

PROMPT_TEMPLATE = """

You are a simulator of the

Todoist app API.

You need to predict the next response
of the API based on a history of

API requests and responses.

For this I will provide
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a detailed json schema of the API,

but since the requests and responses
in the history are in the format

of Python function calling,

I will also provide

a Python schema of the API

so you can map between the two.

You can assume that

at the beginning of the history,

the app is in a empty state,

i.e no objects exist in the system
except for one user object

who executes the requests.

The user's name is "Timothy White”

and their email is
"timothy.whit@gmail.com”.

However, when creating new objects
you should assign IDs starting not from 1,
but from the corresponding number
provided in starts IDs.

For example, when creating a first project,
its id should be 280.

When creating new objects

always use '2023-05-23T09:24:06'

as the creation date.

Certain endpoints

contain messages in the response,

look at the messages I provide

to pick the right one.

Output just the next response of the API
as a python object (not a JSON object)
on a single line with no indentation.
Don't include the "res:" prefix.

JSON_SCHEMA:

{json_schema}

INENEN

PYTHON_SCHEMA:

{python_schema}

START_IDS:

{start_ids}

MESSAGES:

ENENEN

{messages?}

ENRNEN

HISTORY:

{trajectory_str}

NEXT_RESPONSE:

nnn

C Appendix: Full Trajectory Example
An example of a generated trajectory by GPT-4:



Request

Response

search_labels(query="important projects”, color="blue", task_attached=True)

create_label(name="Team Collaboration”, color="orange")

create_project(
name="Innovative Solutions”, color="green"”,
description="A project aimed at developing cutting-edge technology."”,
is_favorite=True)

update_project(
project_id=280, name="Revamped Strategies”, color="red",
description="Optimize workflows and improve team efficiency.",
is_favorite=False, is_archived=False)

create_project(
name="Creative Ideas"”, color="yellow",
description="Brainstorm and develop innovative concepts.”,
is_favorite=True)

show_projects(
query="New Marketing Campaign”, color="orange",
is_favorite=True, is_archived=False)

delete_label(label_id=2294)

create_project(
name="Sustainable Growth"”, color="blue"”,
description="Eco-friendly initiatives and practices.”,
is_favorite=True)

create_task(
project_id=280, title="Implement AI Features”,
description="Develop and integrate AI functionalities."”,
duration=5.0, duration_unit="days", order_index=1, priority="high")

create_project(
name="Dynamic Strategies”, color="orange",
description="Enhance adaptive methods and strategies.”,
is_favorite=False)

create_task(
project_id=280, title="Enhance User Experience”,
description="Improve the application UI/UX.",
order_index=2, priority="medium")

create_sub_task(
task_id=6335, title="Research Emerging Technologies”,
description="Investigate latest technology advancements.”,
priority="high", order_index=1)

show_project(project_id=281)

’description’:’A project designed to brainstorm and develop innovative

concepts.’,

’is_favorite’:True,’is_archived’ :False,’created_at’:’2023-05-23T09:24:06’,

1]

{’message’:’Label
created.’,
’label_id’:2294}

{’message’:’Project
created.’,
’project_id’ :280}

{’message’:’Project
information updated.’}

{’message’:’Project
created.’,
’project_id’:281}

(1
{’message’:’Label has been
deleted.’}

{’message’:’Project
created.’,
’project_id’:282}

{’message’ :’Task
created.’,
"task_id’:6334)

{’message’:’Project
created.’,
’project_id’:283}

{’message’:’Task
created.’,
"task_id’ :6335}

{’message’:’Subtask
created.’,
’sub_task_id’:9636}
{’name’:’Creative

Ideas’,’color’:’yellow’,’is_inbox’:Fal

"project_id’:281, ’creator’:{’name’:’Timothy White’,’email’:’timothy.whit@gmail.com’},

"num_tasks’:0,’sections’:[{’id’ :None, ’name’ :None, ’num_tasks’:0}],

’collaborators’:[{’name’:’Timothy White’,’email’:’timothy.whit@gmail.com’}],

"pending_invites’:[],’is_shared’ :False }

Table 3: Complete AppSim trajectory illustrating label, project, task, and subtask interactions.



